Extremal product-one free sequences in Dihedral and Dicyclic Groups
نویسندگان
چکیده
منابع مشابه
Hurwitz Equivalence in Tuples of Dihedral Groups, Dicyclic Groups, and Semidihedral Groups
Let D2N be the dihedral group of order 2N , Dic4M the dicyclic group of order 4M , SD2m the semidihedral group of order 2 m, and M2m the group of order 2 m with presentation M2m = 〈α, β | α 2m−1 = β2 = 1, βαβ−1 = α2 m−2+1〉. We classify the orbits in Dn 2N , Dic n 4M , SD n 2m , and M n 2m under the Hurwitz action.
متن کاملA Classification of Prime-valent Regular Cayley Maps on Abelian, Dihedral and Dicyclic Groups
A Cayley map is a 2-cell embedding of a Cayley graph into an orientable surface with the same local orientation induced by a cyclic permutation of generators at each vertex. In this paper, we provide classifications of prime-valent regular Cayley maps on abelian groups, dihedral groups and dicyclic groups. Consequently, we show that all prime-valent regular Cayley maps on dihedral groups are ba...
متن کاملSumsets in dihedral groups
Let Dn be the dihedral group of order 2n. For all integers r, s such that 1 ≤ r, s ≤ 2n, we give an explicit upper bound for the minimal size μDn (r, s) = min |A · B| of sumsets (product sets) A · B, where A and B range over all subsets of Dn of cardinality r and s respectively. It is shown by construction that μDn (r, s) is bounded above by the known value of μG (r, s), where G is any abelian ...
متن کاملEE8-lattices and dihedral groups
We classify integral rootless lattices which are sums of pairs of EE8-lattices (lattices isometric to √ 2 times the E8-lattice) and which define dihedral groups of orders less than or equal to 12. Most of these may be seen in the Leech lattice. Our classification may help understand Miyamoto involutions on lattice type vertex operator algebras and give a context for the dihedral groups which oc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2018
ISSN: 0012-365X
DOI: 10.1016/j.disc.2017.09.024